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Abstract

The theoretical sensitivity of Love wave and lagerded shear horizontal acoustic plate
mode (SH-APM) sensors for viscoelastic guiding tayand general loading by
viscoelastic materials is developed. A dispersigmagion previously derived for a system
of three rigidly coupled elastic mass layers is ifed so that the second and third layers
can be viscoelastic. The inclusion of viscoelasstirito the second, wave guiding layer,
introduces a damping term, in addition to a phadecity shift, into the response of the
acoustic wave system. Both the waveguiding laydrtha third, perturbing layer, are
modelled using a Maxwell model of viscoelasticiijie model therefore includes the
limits of loading of both non-guided shear horizdrsurface acoustic wave (SH-SAW)
and acoustic plate mode (APM) sensors, in addibdrove wave and layer-guided SH-
APM sensors, by rigidly coupled elastic mass an@iibwtonian liquids. The three-layer
model is extended to include a viscoelastic folayler of arbitrary thickness and so
enable mass deposition onto an immersed Love walager-guided SH-APM sensor to
be described. A relationship between the changigeicomplex velocity and the slope of
the complex dispersion curve is derived and thelaiity to the mass and liquid sensor
response of quartz crystal microbalances is discuddumerical calculations are
presented for the case of a Love wave device inwacwith a viscoelastic wave-guiding
layer. It is shown that, whilst a particular polymnelaxation time may be chosen such
that the effect of viscoelasticity on the real pHrthe phase speed is relatively small, it
may nonetheless induce a large insertion loss pokential or the use of insertion loss as
a sensor parameter is discussed.

KeywordsSurface acoustic wave (SAW), Love wave, acousitepmode, SH-APM,
mass sensitivity, sensors. 43.35.Pt
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|. Introduction

A wide range of acoustic wave sensors have beantaegpin the literature for use as
mass sensor$® When the mass being sensed is deposited frofigtiid phase or the
focus of the application is to sense the propediesliquid phase, the most obvious
choice of acoustic wave mode is one with a sheard¢tal polarization to the
displacement. This is because, for most acousti@wlavices, an out-of-plane motion
would induce a compressional (sound) wave in tpgidi and so cause high dampirg

The exception to this occurs for flexural plate ed#PW) devices where the wave speed
is less than the speed of sound in the liquid abdbmpressional wave generation does
not occur even though an out-of-plane displaceregists. One of the most common
shear mode type of sensors is the quartz crystablmlance (QCM) and this has been
extensively used for chemical and biochemical gtsidThe QCM has the advantage of
simplicity because it is a simple thickness sheadenoscillation where the crystal
thickness determines the resonant frequency anlahsducers are simple metallizations
of the upper and lower crystal faces. Depositioa tfin mass layer onto a QCM
operated in its fundamental mode causes a frequamftyproportional to the mass per
unit area and the square of the operating frequdnaydoes not cause any attenuation of
the oscillation. This result, sumamarized by thee®brey equatich can be shown to be
valid, at least approximately, even when the masteposited from the liquid phdse
Introducing a QCM from vacuum into a Newtonian lajeesults in both a frequency

shift and an attenuation of the resonance. Thetedfethe shear mode oscillation is to

1/2

entrain fluid within a penetration depéa(2/7:/ wor) ™ < of the surface, wherg is the

fluid’s viscosity, & is the fluid’s density anevis the angular frequency. The oscillation



in the liquid decays within a penetration and so@CM can be viewed as sensing the
interfacial mass defined by the penetration depiice the penetration depth depends on
inverse of the square root of frequency, the fraqueshift on immersion in a Newtonian
liquid becomes proportional to the frequency togbever of 3/2 rather than squared. In
addition, the frequency shift is proportional te gguare root of the viscosity-density
product. These conclusions for liquid phase sensieg described by Kanazawa and
Gordorf. The difficulty with the QCM as a sensor for bigical applications is that high
sensitivity is needed and this requires higher &umental frequency and consequently

thinner and more fragile crystals.

An alternative to the QCM is to use a shear modiase acoustic wave (SAW) type
sensor. In such sensors, the operating frequerdsgtésmined by the spacing between the
fingers in a surface fabricated interdigital traoelutogether with the mode speed
determined by the substrate type and propagatiist8x* Shear horizontal surface
acoustic waves (SH-SAWSs) and acoustic plate moM#) have been considered by
some workers, but it has been claimed that highessnsensitivity can be obtained by
using a wave-guiding layer on the surface of a $¥3o create a Love wave
devicé®*® Experimentally, Love wave devices have been etktasing substrates
supporting surface skimming bulk waves (SSBWs)##SAWs and the wave-guiding
layer have been materials such as silicon diox&i@.§ or PMMA**> In our previous
work we have used both types of substrate andgerafpolymer photoresisfs Whilst
much experimental work has been reported by botkebes and others using these

types of systems, most theoretical consideratibh®we waves assume a rigidly coupled



elastic mass guiding layer and an infinitely theclostrate. It is evident from the insertion
loss that occurs in experiments, but which is metted by Love wave theory based on
a rigidly coupled elastic mass guiding layer, th&oretical work on the effects of
viscoelasticity of wave-guiding layers is neededs klso highly relevant to note that
outside of the biosensing field, the use of moladylimprinted polymers (MIPs) as both
wave-guide and analyte selective layers in Loveaendavices for vapour phase sensing
has been reported. In our own work we have usedsM#oatings on QCMs to detect a
range of analytes, including steroids in the ligplidisé’*® Thus, the experimental
motivation to develop models for the effect of wskasticity on acoustic wave sensors is

urgent.

In our previous theoretical work we have shown 8idtAPM’s can be viewed within
the same theoretical framework as Love wa/@<* This involved extending the
theoretical treatment of both Love wave sensorb gitiding layers composed of elastic
mass to Love waves on finite thickness substratdé SH-APMs to SH-APMs coated
by waveguiding layers. In this previous treatméigher order Love wave modes were
shown to be continuations of the layer-guided SHW&RNd it was shown that
significantly enhanced mass sensitivity could b&aimed for SH-APMs by the use of a
waveguiding layer. In addition, a rigorous relasibip was derived relating the slope of
the dispersion curve to the mass sensitivity obad.wave or layer guided SH-APM
mode. This relationship between the slope of tepatlsion curve and the mass
sensitivity is of importance because it allows gpegimentally determined dispersion

curve to be used to predict the mass sensitivity sgnsor and to predict the change in



sensitivity with frequency. In the present repam, significantly extend our previous
formalism to include the effects of viscoelasticity order to provide as wide a range of
applicability as possible we consider the effectistoelasticity of both the wave-
guiding layer and the material being sensed. Thatment therefore describes the

following situations,

1. SH-SAW and SH-APM perturbation responses to vissial layers of finite or
infinite thickness;

2. dispersion curves for Love wave and layer-guidedAFHis when the guiding layer
is viscoelastic;

3. response of Love wave and layer-guided SH-APMsettupbing viscoelastic layers
of finite or infinite thickness;

4. response of Love wave and layer-guided SH-APMsdesweposition from the

liquid phase.

In each of the above cases of viscoelasticity, ia@ give results for the limits of thin
elastic mass layers and for infinite thickness efMtbnian liquids. In addition, the
relationship between the slope of the dispersiouecand the response of a Love wave or
layer-guided sensor is generalized to include btoelastic waveguide layers and
viscoelastic perturbations. Thus, the present tapaufficiently detailed mathematically
to provide comprehensive analytical results forvekcity shift and attenuation response
of SH-SAW, SH-APM, Love wave and layer-guided SHM\Bevices as sensors in the

gas and liquid phases.



The organization of the report begins with a brésfiew of the three-layer model
describing a substrate, guiding layer and pertgrkager, all composed of rigidly
coupled elastic mass. Then, the idea of viscoelgstor a layer is introduced and a
complex shear modulus defined. It is shown howNhbeier-Stokes equations describing
a viscoelastic layer can be transformed into a vempeation and how the previous results
for the three-layer model can be extended. In amgithe equations describing the
viscoelasticity using a relaxation time and the Mabk model are introduced and the
relationship to the penetration depth and modedspethe three-layer model is defined.
Subsequently, the analytical treatment of a vissied guiding layer is developed with
the important limiting cases of SH-SAW and SH-AP&hsor response to mass,
Newtonian liquid and viscoelastic liquid loadingaiéed. For the general viscoelastic
guiding layer a relationship between the compldraity (i.e. velocity shift and insertion
loss) and the slope of the dispersion curve isldeeel. For completeness, a four-layer
model is also developed so that the response whiarersed device to mass deposition
can be considered. The relationship of our Loveensawd layer-guided SH-APM results
to the Sauerbrey and Kanazawa results are deté&ileally, we conclude by focusing on
numerical calculations for the effects of visceétaguiding layers on Love wave

devices and, in particular, on the consequencesefosors of the insertion loss.



[1. Basic Theoretical Formulation

a) Three-layers of rigidly coupled elastic mass

In a previous report we considered the propagati@hear horizontally polarized
acoustic waves in a system composed of a substir#tecknessy overlayed by a wave-
guiding layer of thicknesd and an additional mass layer of thicknk¢Eig. 1). In this
section, the theoretical development is brieflyieexed so that modifications due to
viscoelasticity can be clearly identified. The duli® and layers were considered to be
rigidly coupled elastic mass layers and the eqoatfanotion in each material reduced

to,

02 = {0%u; 1)

0

wherep is the density of the material apds the shear modulus. The equation of motion

Eq. (1) was then solved in each material usind $o&utions of the form,

ug = (OLO)[CSe_T5X3 + DSeTsX3]ej((‘1_klxl) 2)
u = (0,110)['61 e_jTl X3 4+ BlejTl X3Jej(01—k1X1) (3)
Up = (010) Epe 70 + Fpel TP fel(et k) (4)

where the subscripts | andp indicate substrate, guiding layer and perturbaygiand
ki=(alV) gives the phase speed of the solution. The form of Egs. (2)-(4) were sbio
for their similarity to the displacements of a Lavave solution, but the wavevecity

can become imaginary and can therefore also regrasghear horizontal acoustic plate



mode with a guiding and/or a mass layer. Substgutne trial solutions into the

equations of motion for the materials gives théofeing conditions on the wavevectors,

[ R (5)
Ve Vg

lezwziz—iz (6)
V| \

2_ 21 1

Tp=w v_2 V—z] (7)
p

For elastic mass the density and shear moduluseltfe shear speed of the layervdy

(1 o)™, vi= (1l p)"? andvy= (1) 30)"'2 The final requirement was that the solutions in
each material should satisfy boundary conditionsooitinuity of displacement and stress

at the boundaries; the stress is given by,

Tiz3 =9 21{%} (8)

Applying the boundary conditions gave a dispergquation for a three-layer system,

tan(T d) = £ tanh(Tsw) - € , tan(T yhJ1+ & tan(T; d) tanHTow)] (9)

whereé and¢, are defined as,

i
and
HoT



In this formulation Eq. (9) is a key result becaitsepresents the effect of a finite
thickness third layer of elastic mass upon a lgygded system of a finite thickness
substrate with a finite thickness wave-guiding fay@hen the third layer vanishes
(h-0), Eqg. (9) is the equation that defines the ofreggioint on the dispersion curve for
the “bare” device of a substrate with a wave-gléger. Subsequently, considering the
third layer to have a finite, but small, thickngsges the perturbation of the operating
point due to sensed mass and so enables therstétdcity to be calculated. In the case
of liquid or polymer loading, it is necessary temdify changes in the previous
formulation so as to allow the perturbation to hamearbitrary thickness of liquid or
polymer. The generalization to a liquid or polymelt necessarily introduce an

attenuation of the wave in addition to the velosityft.

b) Viscoelasticity and the Maxwell model

In this section we show that even when a viscaeléster is introduced it is possible to
retain the majority of the equations used in thevjmus section in developing the model
of a three-layer system with overlayers composeglastic mass. To incorporate
viscoelasticity, first consider the Navier-Stokgsi&tion for a liquid under the
assumptions that the liquid is viscous and incosgbde and that the pressure gradient

can be ignored,

ov
‘_f:”_fgz\_,f (12)
ot ps
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wherey is the fluid velocity andy is the viscosity of the fluid. Taking a time dedence

of €“ the velocity can be re-written in terms of disglaents as,

azgf . 2
Pt 2 = Jans 07Uy (13)

Comparing Eqg. (13) with Eq. (1), we have the sameg&on except for the replacement
of the shear modulug, by the liquid factofary. In a similar manner the stress condition
in transforming from a solid to the liquid is akéronly by this same replacement. Thus,
replacement of the shear moduluspy a complex shear modulu@;, with limits of ¢

when the material is solid-like apdry: when the material is liquid-like provides one

possible model for acoustic wave response witlseodlastic layer.

In the Maxwell model of viscoelasticity the shettess and rate of strain can be viewed
as a spring and dashpot model. The total rateaihstontains an elastic part and a

viscous part and a relaxation tirer/ can be introduced. The shear modulus becomes,

g

Gt = .
1+ jowr

(14)

so that the limitwr— o gives the solid limitG; - 1) and the limitwr- 0 gives the liquid
limit (Gs—jarp). Thus, introducing viscoelasticity into the eqaas of the previous

section amounts to the replacemgntG; in Eqgs. (1)-(11).

c) The shear wave penetration depth
In the Newtonian liquid limitwr - 0, we would expect the shear wave viscous penetrati

depth defined by=(2/7/wp)*? to be an important length scale determining whretthe
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layer thickness should be regarded as large orl.sitnigl therefore useful to consider the
relationship between the wavevector for a layertAedluid velocity defined using the
Maxwell model of viscoelasticity. The wavevector &fluid layer (Eq. (6) or Eq. (7))

can be written,

2_ o201 1
T =w v_2 v_2 (15)
f
where,
G )
V? _f jax) ¢ (16)

Using Eqg. (16) in Eg. (15) and recalling the defon of the penetration depth, we can

write,
Y . 2 Y
TfZ: 2](1210”)_60_2 — 221 17)
o) % a
wherea has been defined by,
a= 0 = 0 (18)
. jo2w? . jo2k?
1+ jowr - 1+ jowr -
2v? 2

In the limit dk<<1 (i.e. the penetration depth is much smallen thahe fluid wavevector
becomed;= (-14)(1+wr)¥¥dand is independent of the wave speetihen in the limit
of a Newtonian liquidwr- 0, the solution for the fluid displacement is a gach

oscillation in thexz direction, whereas for a solid withr — « the wavevectorf; becomes

12



real and the solution for the fluid displacemerdnsoscillation in thes direction without

damping.

lll. Viscoelastic Guiding Layer

The first generalization of the previously publidlmodel of mass sensitivityis to

allow the wave-guiding layer itself to become vislestic. This viscoelasticity means
that the “bare” device of the substrate and theegaiding layer has a complex
dispersion curve with a wave velocity that has betll and imaginary parts indicating
that both a velocity shift and attenuation occug tluthe wave-guiding layer. The decay
in the displacement amplitude of the substratefpropagation of the wave over a
length,L, is given by Eq. (2) as exp(lkiL), where Im indicates that the imaginary part
of k;=aJv should be taken. The insertion loss, IL, in delsilper metre propagation

length is then given by,

IL= —Zdlogloe)lm{%)} (19)

In Eq. (19), the sign convention adopted for theertion loss is that a larger positive
value indicates a weaker transmission of the wdtgen considering small changes from
an operating point, the inverse wave speed caxjeneed about the unperturbed wave
speedy, as 1¥=1(My)(1- Aviv,) and the change in insertion loss can then beuated

from the change in the complex velocity.
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a) Perturbation from a bare substrate

In this section we consider a bare substrate coetpokelastic mass supporting either a
SH-SAW or a SH-APM. These two situations correspinsblutions of Eq. (9) with=0
and eitherf®=0 or tanh{ w)=0 with Ts#0, respectively; the superscript zero implies the
unperturbed solution for a bare substrate withisooelastic layer (i.e. Eq. (9) with both
d=0 andh=0). If a thin layer of elastic mass whfxvs is deposited, the SH-SAW
becomes a Love wave whilst the SH-APM mode becarager-guided SH-APM

mode. In the case of the SH-APWA; is purely imaginary so that the tanh() function
becomes a tan() function afigfw=jmsrwith m=1,2, 3, ... . To develop perturbation
solutions for the effect of a viscoelastic layetlatknesd on the bare substrate, we first

re-write Eq. (9) using the perturbed veloarty,+Av,

_ tanr{T °lw)+‘tan HATSw)
tan(Tde) i (Eo ' ML+ tan*S{TSOW)tan F(ATSSW) 20

Continuation of the perturbation solution now degeeapon whethef°=0 or
tanh(Ts’w)=0. In the former case, care must be taken ndivide usingTs’ becaus&®=0
implies TL=0 (i.e.Tsitself is of ordeATs). Since we are interested in the limit of the
viscoelastic layer becoming an infinitely deep Naman liquid, we do not assume tliat

is necessarily small.
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i) SH-SAW perturbation
The perturbation of the SH-SAW uses an expansiontaf3=0 which impliesTs’=0 (i.e.

Vo=Vs). In this case, Eq. (20) simplifies to,
tan(T]?d): A&° tanHATw) (21)

The perturbation in the substrate wavevector meastamdled carefully because af30,

but doing so and grouping together the terms inuaglthe perturbation of the velocity

2
- GfTOV
[&jtanhz[w f ZAVJ:—E B tanZ(T]?d) (22)
Vg Vg Vg 2| Usw

and using Egs. (14), (17) and (18) for the Maxweddel of viscoelasticity gives,

[AVJ hz(wa) —2AVJ 1 21¢d Qo
= ltank?| — | =-= 5 _
Vs Vs \| Vs 2 |\ povs(1+ jor)ad { —ZJd]

whereaq, is Eq. (18) withv=vs. In the limit of an infinitely thick substrate amgsuming

gives,

7 2

(23)

the real part of\v is negative, the tanh() term on the left-hand sideq (23) tends to
unity. Egs. (22) and (23) provide the equationsssary for calculating the velocity
shifts and damping of a pure SH-SAW due to a layalastic mass, Newtonian liquid or

viscoelastic layer of arbitrary thickness.

Solid and Newtonian liquid limits for SH-SAW

The limit of a thin layer uses- 0, so that Eq. (23) gives,

15



2
{ﬂ}an#[ﬂ‘) _ZAVJz—E 2110 (24)
Vs Vs | Vs 2| pgvs(L+ jar)as

and taking the solid limit using bothr - 0 and & af/2vs — o, this reduces to,

2

_ 2
g tanhz M() 20v = —i ,U_f V_S -1 ﬂ

which is the same as Eq. (33) in ref [20]. The flimi - 0 and Faf/2v’=FkH2 - 0 is

equivalent to taking the limit>>v; in Eq. (25), and would be correct for a solid laye
used as a waveguide in a Love wave device. Theé ¢ifan infinitely thick layer of
Newtonian liquid used - o with wr- 0. In this limit, the tan() function on the righard

side of Eq. (23) tends tq and so,

— - L2 2
[&jtanhz wew [-2Av _ W7t Pt 1- jOKg (26)
Vs Vs V Vs 2spPs 2

whereksalvs. In the further limitdaf/2vs> - 0, the velocity perturbation (Eq. (26)) is

purely imaginary and the effect is to create a dagydout no phase velocity shift. From
Eqg. (19) and in the limit ofv - o, the insertion loss is proportional to the squarde
frequency times the viscosity-density product; ttas be contrasted with the square root
of the viscosity-density product expected for QG sors. The limit of an infinitely

thick viscoelastic layer can also be obtained fimn (23) and would result in Eq. (26)

with the replacement,

jo%K2

- £21.2 1+ jor -
[1_ 0 ks} R (27)

2 (L+ jer)?
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i) SH-APM (m>0) perturbation

In the previous section we considered the pertiogbatf a SH-SAW using the
unperturbed conditiog’=0 which impliesTs’=0 (i.e.vo=Vs). In the plate mode case we
take Ts£0 (i.e.Vo#Vs) and purely imaginary so that the tanh() functi@eomes a tan()
function. The (non-trivial) zero’s of this tan()rfction are then our unperturbed solutions
and correspond t&w=jmsrwith m=1,2, 3, ... . Then=0 solution belongs to the SH-
SAW case and is not a plate mode solution in thees¢hat any added elastic mass with
Vi<Vs, N0 matter how small, conveifgfrom imaginary to real. For the perturbation of a

bare substrate supporting a SH-APM, Eq. (20) resltme
tan('l'f0 d) = £° tanHAT W) (28)
and performing the perturbation abddt#0 and using Eq. (17) gives,

J-2jd)]
o, ta

(ﬂj: 2jdv G am
Vm yswwzar% [ —ZJdJ

(29)

wherean is Eq. (18) withv=v,. In Eq. (29) we have uses to indicate that the
unperturbed speed is the plate mode speed andigsedo convert the tanh() function
into a tan() function. Eq. (29) provides the equamecessary for calculating the velocity
shifts and damping of a pure SH-APM due to a lafexlastic mass, Newtonian liquid or

viscoelastic layer of arbitrary thickness.
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Solid and Newtonian liquid Limits for SH-APM

The thin layer limitd - 0, is simply the pre-factor in Eg. (29),

_ 2
{ﬂj - 217 ¢ dviy (30)
Vi) pswedl+ jar)ag,

and in the solid limit otur— 0 and Faf/2ve — w this further reduces to,

_ 2
(ﬂ}: Hi V_g‘_]_ E (31)
Vm Hs \r w

which is the same as Eq. (42) in ref [20]. It shidoé noted that since®w=jmsrthe
substrate thickneswy, is proportional to X i.e.

M,

Vin

Vs

Ww = (32)

N
[

and Eq. (31) therefore predicts a fractional shifthase velocity proportional to the
mode frequency. Also the factoid=vi’ad and so involves the combination of density
and thickness, thus giving the mass per unit &qa(31) is therefore similar to the
Sauerbrey equation familiar from QCM sensors in itharedicts a fractional shift in
phase speed proportional to the frequency multde the mass per unit area. The limit

wr— o andFafl2vs - 0 is equivalent to taking the limit,>>v; in Eq. (29).

The limit of an infinitely thick viscoelastic layeisesd - o in the tan() function on the

right-hand side of Eq. (29). In this limit, the ¢afunction tends tg and so,

18



(33)

Vm

{gj: -2 Vi
Vsz, psWell+ jor Ja,

and in the limitd- 0 we find,

2
Av) 1 | VmyPtlidW | :
| T e for) ) @)

where thd-.(wr) functions are defined by,

1/2
1+ (wr)? + wr

1+ (er)?

Fi (wr) = (35)

There is a strong relationship between Eq. (34)taadesults quoted by Martat al*2
and Ricco and Martfi (1990) with similar dependencies on various phajdiactors
including theF.(wr) functions. However, there is a difference in pine-factor with our
v&7/2vin replacing a mode group velocigy, factor in the Martiret al formula®, this

difference is detailed in appendix A.

b) General perturbation of a viscoelastic layer-guded wave

When a SH-SAW device is coated with an elastic negs with a shear acoustic speed
less than that of the substrate, the wave becorheseawave with a speed intermediate
between that of the layer and the substrate. Similae have previously shown that
coating a SH-APM device with an elastic mass layiéin a shear acoustic speed less than
that of the substrate creates a layer-guided SH-ARN a wave speed intermediate

between that of the original mode and the next td®t¢-APM mode. In both the Love

19



wave and layer-guided SH-APM cases, the use ohtimgpof elastic mass results in a
change in the wave speed, but does not cause apggation loss. For use as sensors,
the benefit of the coating, also described as avganding layer, is that an enhanced
sensitivity to mass deposition can be obtainethdfwave-guiding layer were a
viscoelastic material we would expect an insertoms to be introduced in addition to a
shift in the phase speed. The formalism of sedtican be used to determine the general
effect of depositing a polymer layer (or a mas®tayr immersing the device in a liquid)
on a layer-guided wave device. In this section wesaer both the wave-guiding layer
and the third, perturbing, layer to be viscoelashie thickness of the third layer is kept
arbitrary and is not assumed small. The deviceoresgpto mass or liquid loading can

then be obtained by taking appropriate limits.

The unperturbed system of a substrate with a viaste waveguide layer is defined by
Eq. (9) withh=0,

tan('l’lod) = &0 tanr{Tsow) (36)
whereé® has been defined using Eq. (10), but with viscdielaarameters (i.e4 - G).
Similarly, theT,° includes the viscoelasticity in Eq. (6) via the wé equations of the
form given in Eq. (15)-(18). For simplicity the sifate is assumed to be composed of
elastic mass. We also assume that the unpertuddedity v, does not equak, so that
we are considering an operating point located dway the start of a mode on the
dispersion curve for the system of the substratieganding layer. The perturbation due

to the third layer, which is assumed finite anc¢e@astic, is then given by Eq. (9) and is

symbolically similar to the derivation of Eq. (2#)ref [21], except we keep the third

20



layer thickness finite and the shear moduli andckevelocities of the waveguide and
perturbing layers are allowed to be complex. Thisg)g a subscrigtto represent

guantities for the third, perturbing, layer of tknessh, the complex perturbation is,

vZ2 | tan(T%h
&:g(w,VO,VS,Gth,W’d) 1__f n( f )

pth (37)
Vo v2 Toh

where the function g has been defined as,

2
“ [1+ tan’ (Tlod)]
G|T|0

T|°d

V8
7 _1
Vi

The equivalent equation defining in reference 21 (i.e. Eq. (25)) contains several

e arebioale €T - anr2fron]arfrog) 2o

2
2
Vs

(38)

typographical errors. Noting that in the case afstit massGy/v,”— g and G- av/?,
formally Eq. (37) appears to be the same as irtdise of elastic mass derived in ref [21]
except for the additional tax type multiplicative factor arising from maintaigim finite
thickness, rather than an infinitesimally thinydhiayer. If the wave-guide layer is simply
elastic mass then both the functignand the unperturbed speggl are real and any
complex component tAv arises purely from the viscoelasticity of the pdring layer.

However, if the wave-guide layer is viscoelastierttbothg andv, may be complex. In
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this situation, a third layer having a real sheadoius will, from Eq. (37), give rise to a
complex velocity shiftAv (i.e. an insertion loss occurs via Eqg. (19)). Thosss
deposition onto a device possessing a viscoelgsiding layer can induce an insertion
loss response in addition to a frequency (or phasgonse. In the SH-APM limit of=0

and tanh{w)=0 with T&20 (i.e.Vo2Vs), g- Vo/(vswpos) andEq. (37) reduces to Eq. (29).

i) Maxwell model for perturbing layer
The effects of viscoelasticity in Eq (37) can bedmanore evident by re-writing it using

Egs. (16) and (17),

-2jh
ta 5
G a
&:g(a),vo,vs,q,vhw,d) 1- f2 f peh (39)
Vo Pt Vo —2jh
ay

whereG is given by Eq. (14) andy by Eq. (18). In the Maxwell model the second

factor in Eq. (39) can be written using the flughptration depth and relaxation time as,

s 5212
PP P PO Ll (40)
,OfV(_Z) 2(1+Jwrf)

In the limit of a thin viscoelastic layer, tdr— 1 and the perturbation becont®gviloh,

which in the solid limit fur; - ) becomes mass per unit area. In the limit of &nitely
thick viscoelastic liquid, tan[(iZ'31/[( -2j)"*] - j/[(-2j)**] and assuming that

X afI2v,? - 0 we obtain the analogous equation to Eq. (34),
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which reduces to Eq. (34) when tthe O limit for g is used.

ii) Relationship to the slope of the dispersion curve

Eq. (39) shows that the same functgdetermines the sensitivity towards both mass and
liquid perturbing layers since the function depeodly on the operating frequency and
substrate and waveguide layer properties. Therefisiag Eq. (37) for the thin mass

limit and Eq. (41) for the liquid limit, the ratwf the response of a Love wave or layer-
guided SH-APM mode due to coating by a thin magsrlar due to immersion in a

perturbing liquid is,

(Aan)ma$ :\/2— 1_§ Am 42
(BInV)iquid “ V2 |\[psn “2)

whereAm=ph is the mass per unit areg, is the shear acoustic speed of that mass and
the fractional perturbation in the wave speed aEnlwritten as a perturbation in the
logarithm of the wave speed. In many senses tlassimilar relationship to that between
the Sauerbrey response of a QCM and the Kanazawasston for the liquid response of
a QCM. In the QCM case the ratio of the responsmsddvinvolve a/wand the ratio of

the mass per unit area to the square root of guédlidensity-viscosity product. For the
layer-guided wave it should be noted that the dpeygoint on the dispersion curve for
the device (substrate plus guiding layer) deterswg@nd this effectively introduces a
frequency dependence, although in many situatigfs<vo>. Whilst the frequency

dependence of the ratio of the mass and liquidoresgs is similar to the QCM result, Eq.
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(38) does not imply that the absolute frequencyeddpnce of the layer-guided system is
the same as the QCM frequency response. Howevaet,i/particularly important
experimentally is that if we can determine the gty function g for any perturbing
layer then it is the same function for any othgef&. Whilst we have previously noted
the importance of this last observation, our presamnk shows that its relevance is much
wider than previously indicated. The functigecan be determined using a thin elastic
mass layer, but will then be valid whether the devs used for sensing mass deposited
from the vapor phase or for sensing liquid (or pody) properties. Moreover, the
sensitivity functiong for a sensor created using a viscoelastic wavegaiker can be
related to the slope of the dispersion curve irdantical manner to previously suggested
for a waveguide layer composed of elastic flag$us, by considering a third perturbing
layer composed of a thin layer of the same visatielanaterial as used to create the

waveguide layer, we can use Eq. (37) to derive,

9(w vy, Vs, G, v, W, d) = — 12 2\(dl(;gevj (43)
Al-vE /L o e

Defining a new dimensionless varialtedf/v” (i.e. z=d/A), where the superscript
implies the solid limit (i.ewr— o in the Maxwell model) the perturbation of the coexp

velocity, Eq. (37), becomes,

2 2
av_[17VE VS (dlogev] tar{T°h)) ap; h "
=27

Vo |1-v? / v2 dz Toh |2 p

and in the Maxwell model of viscoelasticify’h=(-2j) "% a°.
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iii) Relationship to the Sauerbrey and Kanazawa equations

Eqg. (44) is a key result of this work becausertrsgly emphasizes the formal similarity
between the response of Love wave and layer-gusdtedPM devices with that of
QCMs. It deserves to be regarded as a generalizatithe Sauerbrey equation for QCM
response to mass loading and the Kanazawa reslifjdicd loading to layer-guided
sensors. The limits of the ter type function in Eq. (44) provide results for then solid

film and infinitely deep Newtonian liquid,

(0]
tai(z;h) B N C . . ,  ®
f Zh(l—v?/vg) o ¢ T A e

According to this equation, subject to two conditipthe fractional change in wave speed

1 h-0

of a sensor due to an infinitesimally thin layerigidly bound elastic mass is
proportional to the frequency multiplied by the magr unit area (i.eyoth=cAm) and
the response to immersion in an infinitely deep d&man liquid is proportional to the
square root of frequency multiplied by the squar of the density-viscosity product

Y2 The two conditions that must be fulfilled aretttiee operating point on the

(i.e. aporryy)
dispersion curve does not change andfiatv,”. However, the first of these conditions
is a strong condition because a general change@fiéncy without changing the
waveguiding layer thickness will necessarily attex factor in Eq. (44) that involves the
derivative of the phase velocity. It is therefor generally true that the frequency

dependence of thiw/v, response to mass and liquid loadingianda}’?, respectively,

although the mass and liquid responses should diffe factor ot
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IV. Mass Deposition from a Liquid

The perturbation summarized by Eq. (44) is theltegwadding a viscoelastic layer to a
Love wave or layer-guided SH-APM device in vacudihen the added layer is a
Newtonian liquid of infinite depth the perturbatisna comparison between the wave
velocity for the device when immersed to the waemeity for the device in vacuum.
When the added layer is an infinitesimally thin smkg/er, the comparison is again to the
wave velocity for the device in vacuum. In sensorkwith QCMs it is approximately
the case that mass deposition from the liquid pbesates the same perturbation as the
same mass deposition, but from the vapor phasd.dva wave and layer-guided SH-
APMs mass deposition from a liquid phase, introducéourth layer and the unperturbed
situation corresponds to three layers (Fig. 2). [@ger that can be regarded as the
perturbation is positioned between the wave-gurdkthe final (fourth) layer. Following
the pattern of part ii) of section lllb, it is teting, but strictly incorrect, to conclude that
mass deposition from a viscoelastic liquid phadebei described by Eq. (44) witlerAh
representing a mass layer and the unperturbed@oling the immersed Love wave or

layer-guided device, i.e.

Av _ 1—v§1/v§ (d|09er WomAh (46)
Vo 1_V|2/V§ dz z=z, 27'[\'/|o°,0|

wherey, is a solution of the three-layer equation (Eq),(9)
tan(Tlod): &g tank(Tsow)— a tan(T]?bll+ g tan(Tlod)tank(Tsow)l (47)

The symbolsfy andé; have been defined as,

_ MsTs
= 48
¢y G, (48)
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and

£y =t (49)
fl =
T
Eq. (47) can be rearranged into the form,
&2 tanhT2w)- &9 tanT b
tan{r°d)= 3 r{'s ) A r ) (50)

1+69¢9 tan(T?b)tan(Tlod)tani{Tsow)

For a device immersed in an infinitely deep visasgt medium the limib - co would

need to be taken. If Eq. (46) were correct, thenpierturbation due to mass deposition
from the liquid phase could be related to the naegmsited by experimentally
determining the dispersion curve fom the liquid as a function of guiding layer
thickness in a similar manner to the work repomteeference 16. This type of
experiment would enable the derivative of the lipihase dispersion curve to be
determined numerically and the sensitivity to baleated. These considerations only
apply if an equation similar to Eq. (46) can bevshdo be valid for mass deposition from
a liquid; in the following we provide a rigorousroetion of a slightly modified form of

Eq. (46) (see Eq. (52)).

To rigorously investigate the effect of mass dejpmsifrom the liquid phase, a full
solution in a similar form to Eq. (44) can be ob&al from first principles by extending
the three-layer model to a four-layer model; tlgelta involved is extensive and is
briefly outlined in appendix B. The result for therturbation in the velocity from the

solution to Eq. (47) is,
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where the functiogy. depends on the substrate, guiding-layer and Viastie fluid
properties and the operating point and frequency. similar manner to the derivation of
Eq. (43), we can imagine the perturbation resuliogn the deposition of a thin mass

layer that has identical properties to the wavetiggi layer, and this allows us to relate

the functiong, to the slope of the liquid phase device dispersimve,

2.2
av | 1+E5, tan (be) (1—v%/v§}(dl09evj @Pmhh (52)

IV 2 2/ 2
Vo 1+£&9 tanz('l']?b) 1-v /VO dz

z=z, 277\'/|00p|

which is similar to Eq. (46) apart from the firatcfor; &m has been defined in the same
manner as Eq. (49). For an infinitely deep viscst&diquid assuming a Maxwell model
and that the¥k,/2 term inT;° can be neglected, the factors in Eqgs. (47), (Bl)(&2)

involving G(T° become,

G¢Tf tan(TfOb) L Nt @ V:/OEfW‘)(— F_(wr)+ jFy(wr)) (53)

In the limit of a Newtonian liquidur— 0, so thaF.- 0 andF, - 1.

When considering acoustically thin layers of masgasited onto a QCM sensor

operating in the liquid phase it is often assunined the total shift in velocity is additive.
The total velocity shift is viewed as the sum o #hifts that would be obtained for the
QCM immersed in the liquid added to the shift twauld be obtained if the mass were

deposited from the gas phase. The accuracy oasisismption for Love wave and layer-
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guided SH-APM sensors can be assessed by comaging6) with Eqg. (52) and
defining two mass sensitivity functions,

vacuum

2 /2
gvacuum — i 1 R{ngacuum_R 1-v2 V2 [d|ogevjvacuum
Pt h-opsh (Vv 1—v|2/vc2, dz J,er 2m0p)
(54)
and
fluid
SﬂUIdEIim 1 R Av
Pm h-0pomh Vo
fluid i
2 fluid , (55)
0 2(ro
_ 1+&m tan (Tf b) [1—v§1/v§J (dlogevjﬂ“'d
2 2 /2 o ©
1+£§3| tanz('l']?b) 1-v /VO dz 2=2, 278 Py

The superscripted wordacuum andfluid have been used as reminders that the
unperturbed reference situations correspond to/eeleither in vacuum or immersed in
a fluid. In order for the additive assumption uge@CM sensor work to also be valid for
the layer-guided sensors, a number of conditioesl e be satisfied. Firstly, the first
factor in Eq. (55) has to be approximately unitgc&dly, the terms in the second factor
in Eg. (55) need to be approximately equal eitlemalbise the two unperturbed operating
point velocitiess, are close or becausg’/v,’<<1 andv;?/v,’<<1; the unperturbed,’s

are different in Eq. (54) and Eqg. (55) becauseismelative to the dispersion curve for
the device in vacuum and the other for the deviaée fluid. Third and finally, the
slopes of the phase speed curves at the operatingghould be approximately equal.
For Love wave and layer-guided SH-APM sensors dpdrat maximum phase speed

sensitivity the second two assumptions may notueeliecause the maximum phase
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speed sensitivity will necessarily correspond pbint of steepest slope on the phase

speed curve.

V. Numerical Results and Discussion for Love Waves

The equations developed in the previous sectiams@nprehensive and cover many
types of sensor situations. The effects of elastlitls, Newtonian liquids and viscoelastic
liquids on SH-SAW and SH-APM sensors are descriyelq. (36). This equation also
gives the dispersion curves for both Love waveslayer-guided SH-APMs when the
guiding layer is viscoelastic and the dispersiorves can be used to evaluate sensor
response via Eq. (44). Eq. (47) describes the digpecurve for a Love wave or layer-
guided SH-APM sensor immersed in liquid and thgpdrsion curve is relevant for the
evaluation of sensor response to mass depositedthe liquid phase (Eq. (52)). Whilst
the analytical equations cover a wide range of@esituations, it is a substantial task to
provide comprehensive numerical calculations fothese situations. Therefore, in this
section we focus solely on the effect of viscoat#tgtin the guiding layer on the

dispersion curve and the sensor response of aWwave device.

a) Numerical approach

To understand the effect of the viscoelasticityhef guiding layer on Love waves it is
necessary to numerically compute the dispersioveclq. (36) for the complex velocity.
The insertion loss can then be calculated fromrttaginary part of the inverse wave
velocity. The general problem of the substrate plugscoelastic layer has three intrinsic

scales related to the frequency. Imagining thetsatesto be infinitely thickw - «) and
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the guiding layer to be perfectly elastic masg - ), the guiding layer thickness
becomes a natural intrinsic length scale. By defirithe combination,=v/f a
dimensionless combinatiaiij, can be formed and the velocity is a real valuerdened
by a function ofd/ A, with no other dependence on frequency. Howevdéhgeithickness of
the substrate is retained as finite, then anotberbinationA<=vy/f becomes possible and
the velocity then depends on the frequency in ansomplicated manner, although it
remains real; a natural dimensionless combinasavids. When the perfectly elastic
mass limit is relaxed so thair becomes a natural dimensionless combination, the

frequency dependence of the wave speed becomescomm@icated and, in addition, the

speed becomes complex indicating that an inseldEmalso occurs.

Considering a finite substrate composed of elastiss overlayed by a finite thickness
Maxwellian viscoelastic layer there are five matkeparametersd, vs, g, Vi, wr) and
three operating parametews, ¢, f) wherev,”=vi(wr- «) and the produabr is treated as
a single parameter. Using this parameter set ffe [genetration depth is given by

A=2nl aw)Y?, the layer speed is= v“[j wr(1+ wi)]

, the layer shear modulus by
Gi=jp vi™2wil(1+jwr) and the viscosity of the layer is given by G(wr— ) 7. In
analogy to the dispersion curve for a Love waveaeen an infinite thickness substrate
and with an elastic mass guiding layer, we defipammeter=df/ vi”. To re-write Eq.
(36) into a form suitable for numerical work, wefide a new variable=T,°d and a

complex function=2nv”(1-v’/ve)%zlvi. Eq. (36) can then be written in either of the two

equivalent forms,
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The numerical problem is to compute the complexeaifx that is a solution to Eq. (57)

or

(and hence Eq. (56)) given a particular set of nmatand operating parameters. The
complex velocity is then found from,

V

2
L[
2m”

To understand the numerical problem, we can fosser the limitwr - o, which

V= (58)

reduces< andv to being real numbers. For a given parameterisetsalution fox can
either lie in the range 0 {Bor it can be larger tha but smaller thant®1- vi"?/vs2)Y? z.

In the former case, EqQ. (56) indicates that thatgwis forx will correspond to the
intersection of the tarwith the tanh curve. If<mtthere will be a single unique solution
corresponding to the first Love wave mode, sixg8 necessarily means from Eq. (58)
thatv<vs. Each timeGincreases bytan additional solution, corresponding to a higher
mode Love wave, becomes possible; the number of lawve modes is given by 1+ the

integer part ofgtt The start of each Love wave mode, labelled binsagern,

corresponds td,°d=nmtand&°=0 in Eq. (36) so that=vs. In the latter case, whe® S, Eq.
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(57) is a more suitable form for understandingeeation defining.. The problem then
corresponds to finding the intersections betweenwo tan functions, which can have
widely differing periods irx. These solutions each hawevs and correspond to layer-
guided SH-APMs. More traditional, non-layer guidgid-APMs occur whed=0 and

Ld=jmmand this corresponds to mode speggsgiven by,

Vi =8 (59)

M RULE 2
ww

Eq. (59) can also describes the layer-guided phatde speeds at the start of each Love

wave branch, defined bl°d.=ntt. The specific guiding layer thicknessdg,, at which
V=V, is satisfied, are given by,

HET

Thusd,, can be described as the guiding layer thicknessath the Love wavestE0)

dnm -

(60)

and their associated plate modeg(@) begin and the wave speeds at the start of these

modes are given by,

b) Numerical results for phase speed and insertioloss

The first effect of allowing the guiding layer tedome viscoelastic is that Eq. (57) and

its solutionx both become complex. Analytically, we can stiltigne a set of Love wave
and associated layer-guided SH-APM modes with tidwéssof the modes at valuet,

Vm) given by Eq. (59) and Eq. (60). The wave spedbteastart of the mode is real whilst
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the guiding layer thicknesh, becomes complex, i.e. the mathematically requirgdor
V=V, becomes an unphysical value. In the remainddrisfsection we simplify the
computational problem by concentrating on the é$fe€ viscoelasticity of the wave-
guide layer on the Love wave solutions and do nasiler the layer-guided SH-APM
branch of the solutions. Our approach is to chdlosenaterial parametergs(vs, A, vi”,

wr) and the two operating parameterandf, and to then step through a range of guiding
layer thicknessl. At each step Eq. (57) is numerically solvedtf@ complex rookx and

the velocityv calculated from Eq. (58). The insertion loss ertlealculated from the

imaginary part of the inverse velocity using EQ)(1

Figure 3 shows calculations of the real pan asing an operating frequency of 100
MHz on a substrate of thickness 50@ with material parameters pf=2655 kg nt and
V5100 m &, coated by a viscoelastic layer with material psreers 0fn=1000 kg n
andvi(wr— «)=1100 m &. The solid curves show the first two Love modes ase a
relaxation time for the wave-guiding layer satiafyiur=10°, whilst the dotted curves use
wr=10; the dotted curves are almost identical tosthig curves. The horizontal axis has
been plotted using=df/v;”. The horizontal dashed curve is the numericaluatan of

the real part of the analytical limit gf> v,

Vv =v|°°g(a(wr)— jF-(wr)) (61)

and the dashed curve with an initial value/e¥s is the numerical evaluation of the real
part of the analytical limit ofi - O for the first Love wave mode. Considering thidso

and dotted curves in fig. 3, the effect on the peat ofv of including some
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viscoelasticity through the relaxation time whikseping both the frequency and
constant appears to be relatively small. The ttieamsin the dispersion curve in fig. 3
betweenvs andv,” occurring atzZl1/4 for the first mode and af3/4 for the second mode,
is sharpened, but the absolute changes in th@aeabfv are small. To clarify this, the
absolute changes in the real part of the phaseitelare shown in fig. 4; in this figure
the solid curve shows the first Love wave mode theddotted curve shows the second
Love wave mode. For the higher Love wave modesdhee ofd at which the mode

begins is also reduced ag decreases.

Figure 5, which plots the insertion loss as a fismcof the normalized guiding layer
thicknessz, shows that the effect of viscoelasticity on theeirtion loss is considerably
larger than on the real part of the velocity. m3ia higher positive value indicates a
signal that has greater loss and is, hence, we@kersolid curve is the insertion loss per
metre calculated usingr=1C°. The dotted curve is the insertion loss per msteded
down by 10 calculated usingur=10; the scaling has been used to enable both stove
be displayed on the same diagram and has beenrctmbe the ratio of thexr’'s. The
accuracy of the numerical calculations for the iitige loss can be verified by
considering the analytical limit for the insertilmss as/— v (i.e. Eq. (61)). The insertion

loss per metre is then given by,

= —zofoehr| 2] - o] £ | e ) e
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and this formula explains the choice of scalingdusepresenting the numerical

calculation for the curve witbur=10. Providedwr 210, theF.( wr) function can be

approximated to 1/@r)*?

thus giving IL1/cr in the limitv - v.

Both the “low loss” wr=10° and “high loss” wr=10curves in fig. 5 show a characteristic
change with increasing guiding layer thickness. Siering the first Love wave mode,
for very thin guiding layers the insertion losshimth cases is small, but as the guiding
layer thickness increases the loss increases isigmify with a particularly rapid change
occurring at around11/4 for the first mode. Subsequently, the loss siveots and then
saturates at a constant value given by Eq. (62)mMlar behavior occurs for the second
Love wave mode, although the overshoot is hardhaegnt and the particularly rapid
change occurs at arourd3/4. Thus, the insertion loss depends on the Laasewnode
so that, for example, at a guiding layer thickn&fsg .65 the losses for the first Love
wave mode are high, whilst the losses for the sg#t@mve wave mode are low. For the
first Love wave mode, an overshoot can also be aséf,“/4, whered, “=v,“/f and this
can be shown to be due to thextéerm in Eq. (57). Indeed, it is similar in origimthe
idea of a shear wave resonance known in work wiEiM&*?° A close comparison of
Eq. (36) in the thin layer mass loading limit watboustic impedance models for QCMs
shows that the tarterm in Eq. (57) is the term in the acoustic inguezk that is the

source of the shear wave resonance idea.

Physically, it is possible to understand the ingarloss behavior as a consequence of the

transfer of the Love wave from a wave similar tshaar acoustic wave in the substrate to
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one similar to a shear acoustic wave in the guithyggr as the guiding layer thickness
increases. In our previous treatment of Love wavieis elastic mass guiding layers we
plotted displacement profiles for a range of guidiyer thickne<3. In any mode the
upper, free, surface of the guiding layer is am-aotle and the displacement decays into
the substrate. For the first Love wave maaked) and very thin guiding layers, the
displacement in the substrate decays gently sahbatubstrate displacement
approximates a plane wave and this plane waverpatig¢ends into the guiding layer. As
the guiding layer thickness increases the displac¢mf the first Love wave mode=0)
becomes similar to a quarter wavelength type pattethe guiding layer with the
displacement decaying so rapidly into the substtatthe substrate-guiding layer
interface almost becomes the location of a nodkéardisplacement. Effectively, for thin
guiding layers the Love wave is a shear acoustievitathe substrate, with a wave
velocity similar to a shear acoustic wave in thiesstatevs, and for thick guiding layers it
is a wave in the guiding layer with a wave veloaimilar to a shear acoustic speed in the
layerv; . For the next Love wave mode=(l), the wave begins as a plane wave in the
substrate with a half-wavelength type pattern enghiding layer and then evolves with
increasing guiding layer thickness into an almesbaisplacement in the substrate with
a three-quarter wavelength displacement pattetimerguiding layer. Since the substrate
is much thicker than the guiding layer the iniptdne wave in the substrate represent the
majority of the displacement and the half-wavelarggttern in the guiding layer is only
a small part of the overall displacement. Howefarthe thicker guiding layers the
substrate displacement almost vanishes and sagpackement in the layer is the

dominating part of the overall wave displacememta kimilar manner to the first Love
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wave mode, the transition in the displacement patterresponds to a change of the
wave velocity fromvs to vi. In this interpretation the insertion loss aristhge to the
viscoelasticity of the guiding layer would only loece effective when the displacement
is dominated by the displacement in the guidingtand this only occurs once the
transition in velocity towards the layer valjeccurs. Thus, we would expect the first
Love mode to have significant damping at, for exnapD.65, whilst the second Love
mode to simultaneously have little damping. More@pweace the Love wave mode is
localized into the guiding layer, the insertiondagould be expected to saturate, as is

clearly the case from fig. 5.

The prediction that one Love wave mode can havafgignt damping whilst the next
higher Love wave can simultaneously have little gang is consistent with reported
datd®. Frequency spectrums for Love wave devices shawath a guiding layer is built

up systematically, the resonant frequency shifts lmver value and the wave eventually
appears to be completely damped. However, datessh®e that if the guiding layer
thickness is further increased, then after a gtix@kness a strong mode appears back at
the original frequency and then again shifts wittreasing guiding layer thickness to
lower frequency until it is completely damped. Tpatern has been observed through a
sequence of more than seven Love wave modes. @oegal caution against a too

literal numerical application of our results to ekmental data is that the theory concerns
Love waves generated from SH-SAW supporting sutesrdata on Love waves taken
using an surface skimming bulk wave (SSBW) modeld/aot have an insertion loss

predicted using this theory because in the SSBW,¢he guiding layer thickness also
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appears to decrease the angle at which the SSBMnshed into the substrate. For a
Love wave generated from an SSBW mode, the ireffaict of a guiding layer is to
improve the transmission of the wave rather thashetop the wave. Eventually, as the
wave localizes to the guiding layer the loss shd@dome equal to that predicted by Eq.
(62). Thus, the theory in this work may apply qitatively to Love waves on a 36Z-
LiTaO3; SH-SAW substrate with the propagation path metdlj but only qualitatively to

Love waves on a 90otated ST-cut quartz SSBW substrate.

¢) Mass/liquid sensitivity

In QCM sensors targeted at mass deposition apilitatit is usual to quantify the mass
sensitivity by the phase velocity mass sensitiig. S,’ defined by Eq. (54) with
pAh=Am andvi=v)); to a first approximation the attenuation vanssfar thin mass

layers. Figere 6 shows the magnitude of the phaleeity mass sensitivity for the data in
fig. 3 derived from the slope of the curves in Bgthe solid curve correspondsas=10°
and the dotted curve correspondsuds=10. The effect of increasingly viscoelasticitye(i.
reducingar) is to increase the peak sensitivity, althoughttiamner guiding layers the
viscoelasticity can reduce the sensitivity. Theuaabn in the sensitivity prior to the peak
may be important experimentally because with tiserition loss increases with
increasing viscoelasticity and it may not therefioegpossible to operate a device at the

guiding layer thickness required for peak phaseail mass sensitivity.

In QCM sensors attenuation occurs if the mass diggbis viscoelastic, but not if the

mass is purely elastic. Therefore, an importanéeispf the insertion loss arising from
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viscoelasticity of the waveguiding in a Love wawyite is that in theory it provides a
highly sensitive sensor parameter both for lig@dssng and mass sensing even when the
mass is purely elastic. To understand why, ieisassary to reconsider the origin of the
high phase velocity mass sensitivity in a Love wdgeice with a guiding layer

composed of elastic mass. Equation (44) showsltlegbhase velocity mass sensitivity is
directly proportional to the slope of the logaritlafithe mode velocity and that the
highest phase velocity mass (and liquid) sensjtiwdcurs when a device is operated at
the point of steepest slope on the dispersion cdive point of steepest slope
corresponds to the mode being on the point of itiandetween a wave dominantly in

the substrate, and so haviwidss, to one dominantly in the layer, and so hawnig. In a
similar manner, in the case with viscoelasticity thsertion loss also changes from a
value characteristic of the substrate (i.e. zay@ value characteristic of the layer (i.e.
given by Eq. (62)). We would therefore expect higgertion loss mass and liquid
sensitivity to correspond to the point of steegégbe of the insertion loss curve and for
that slope to be particularly steep if the polymmeluces high insertion losses. To be more
guantitative, Eq. (19) for the insertion loss sholaat the change in insertion loss per unit

propagation length due to a small change in thenptex) phase velocity is,

AIL = 20(log; e)lm{vﬁ[%ﬂ (63)

0 [0}
and the fractional shift in the phase velocityiigeg via Eq. (37) using thgfunction or
from Eq. (44) which uses the slope ofdagin Eq. (63) a positivAlL represents a

weaker signal.
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In the approximation that the material being sensadastic mass with a shear acoustic
velocity similar to that of the guiding-layer (ixe=v)), then Eq. (44) with Eq. (63)
predicts that the maximum change in insertion foss given deposited masni=oh

with h small) will be high when the operating point i®shln such that the imaginary part
of v, 'dlogev/dz is large. For large relaxation times, this combarais dominated by the
imaginary part of the slope dlggdz. Thus, a key conclusion is that when using a Love
wave device to sense rigidly coupled elastic masgrtion loss can be a highly sensitive
parameter because the elastic mass can convevatreefrom having a low loss to a high
loss via the transfer of the displacement fromsthiestrate to the guiding layer; there is
no absolute requirement for the deposited mads titsbe viscoelastic. Whilst, in a
sense, the elastic mass does not itself have gthesmass effectively moves the
operating point of the device down the complex elisfpn curve into a region where the

guiding layer losses start to dominate the Loveavav

For sensing rigidly coupled elastic mass of sheaustic velocity,, deposited from
vacuum, we can define an insertion loss mass #gtysfunction S~ in a similar manner
to the phase velocity mass sensitivity functiomgghe change in insertion loss per

metre divided by the mass per unit area,

Stk = lim (%j = 20(log;p€)Im

A 1—v§1/v§ 1(dlogev
Am- 0\ Am

(64)
2oV 1—v|2/v§ Vo\ dz jz:z

(0]

where Eq. (44) and Eq. (63) have been used torotitairelationship to the slope of the

dispersion curve. One immediate consequence ofad{is that the peak sensitivity in
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insertion loss does not necessarily occur at theesaperating point on the dispersion
curve as the peak sensitivity in phase velocity.és@mple, when sensing a mass layer
composed of approximately the same material agufding layer, the peak phase
velocity sensitivity will correspond to the maximwhdlog.v/dz whilst the peak insertion
loss sensitivity will correspond to the maximumvdtllogev/dz. Figure 7 shows the
insertion loss mass sensitivity for a Love wavehvatviscoelastic guiding layer with the
same parameters as used for the data in figh®.approximation (¥m/ve?)/(1-

vi’lvo?)<<1 has been used in Eq. (64). The solid curveesponds taur=10° and the
dotted curve corresponds é&@=10, but it should also be noted that the dataJderl0

has been scaled down by a factor of ibOorder to plot the figures on the same diagram
for comparison of their shapes. The need to uaege Iscaling factor in presenting the
data for the effect of viscoelasticity on the insegr loss mass sensitivity emphasizes that
experimentally insertion loss may be a very usk@we wave sensor parameter; we

would also expect this to be true for other layeidgd acoustic wave sensors.

If the Love wave device is being used to sensegdmdue to the device being immersed
in a liquid, then Eq. (44) and Eq. (45) show tmserrtion losses will arise whether or not
the guiding layer is viscoelastic. In the infinjteleep Newtonian liquid case given by Eq.
(45), tan{°h)/T¢°h has real and imaginary components of equal maggmisince (-
2j)*%=14) and a Love wave device with an elastic guidingtanill couple the imaginary
part into an insertion loss. If the guiding layecbmes a viscoelastic material, then the
real part of tani;°h)/T;°h will also become coupled into the insertion lossthe

imaginary part of the slope of lpg (multiplied by 1i). This additional mechanism for
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insertion loss changes, introduced by the visctieigsof the guiding layer, may provide
even higher sensitivity in liquid phase sensingliappons. The mass sensitivity defined
by Eg. (64) does not include this additional medsrarfor the liquid phase sensitivity.
However, because for the infinitely deep Newtoriguid the real and imaginary
contributions of tanf;°h)/T;°h have equal magnitude, the relative importand@ef
viscoelasticity of the guiding layer to the insentioss can be assessed by considering the
relative magnitudes of the real and imaginary pafrtbe slopes of lag and this is

shown in fig. 8. The parameters used in fig. 8taeesame as for the data in fig. 2; the
solid curves corresponds tar=1¢ and the dotted curves correspondsurs10. The
curves with negative peak values are the realgfdhte slope and the curves with
positive peak values are the imaginary part ofstbpe. It is evident from the existence
of only dotted curves with positive peak valuestfar two Love wave modes in fig. 8
that the imaginary part of the slope is vanishirggtyall forcwr=10°. However, the real

part of the slope (curves with negative peak valisesf comparable order of magnitude
for both wr=1¢f andwr=10. Thus, for liquid phase sensing we would exp&ot
contributions to arise from the slope (i.e. diddz) to the phase velocity sensitivity as the
guiding layer becomes viscoelastic. For liquid ghssnsing similar conclusions also
apply for the insertion loss sensitivity althougle televant factor ig dlogev/dz rather

than simply the slope dlegdz.

In this section we have not considered numeridakyeffect of depositing mass from the
liquid phase because this requires a substantiahe difficult root finding procedure

based on Eq. (47) (or Eg. (50)) rather than theknEqg. (36). However, some
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gualitative comments are possible. The simplestatthe liquid phase is that it has two
effects: first the liquid shifts downwards eachmaf the dispersion curve for the device
in vacuum to create a new dispersion curve, anoingethe magnitude of the slope of the
curve at the operating point is subsequently highlee idea that the vacuum based
device response to liquid can simply be addeddosituum based device response to the
mass uses the assumption that the change in sldpe dispersion curve can be
neglected. Since a Love wave device has high pleleeity mass sensitivity precisely
because it is operated at a point of steep slofgbedispersion curve, it is far from
obvious that the assumption that the change irestap be neglected will be true.
Moreover, for a viscoelastic guiding layer it i$fidult to predict qualitatively how the
introduction of the imaginary part to the slopel wilange the response. Nonetheless, the
equations developed in this work provide a rigoroasis for a numerical investigation of
these issues. We would anticipate that the inseltiss response will be particularly
important in biological sensing applications wdre mass being sensed often has an

element of viscoelasticity and is usually depositedh the liquid phase.

VI. Conclusion

A theoretical treatment of Love waves on finite stuétes and with viscoelastic wave-
guiding layers, and of shear horizontal acousttepiodes with coatings, has been
developed. Equations for the sensor response sé¢ tiypes of systems for both mass and
viscoelastic or Newtonian liquid phase applicatibage been derived and the limiting
cases of mass and liquid response for shear hegilzoolarized surface acoustic wave

and shear horizontal acoustic plate mode senstagett The response of Love wave
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and layer-guided SH-APMs to a general materiak{elanass, Newtonian liquid or
viscoelastic fluid) has been shown to depend orslibyge of the complex dispersion

curve and the relationship to the QCM mass anddighase sensor response has been
discussed. Equations describing mass deposition tihe liquid phase have been
developed. The analytical results have been inya&®td using numerical calculations,
based on a Maxwell model of viscoelasticity for teve-guiding layer of Love wave
devices. The role of the wave-guiding layer’s vedegticity in creating an insertion loss
and modifying the mass sensitivity has been quedtift has been suggested that, by
using a viscoelastic material as a wave-guidingiaysertion loss can be a useful sensor

parameter for studying not only liquid phase resgombut also mass deposition response.
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Appendix A - Comparison to literature SH-APM formul ae

To compare our result for the perturbation of aAPM sensor response by a

viscoelastic liquid to the result from Marthal?® we start from our Eq. (33),

(&j: J-2inviy A
Vm) Vg pewel+ jer)ap,
From Martinet al’s definition of yt, we can find thay’=2j/aw’ and so Eq. (A1)
becomes,
Av 2 [n¢ v
— == m | | —=tm (A2)
V) vZpew| 2w | 1+ jar)
and it has a real part of,
Av 2 [ 1 107 —-ov2 [ s Y
== | IR M = | o Im) (A3)
Vm) vZpew| 20| [+ jwr)] vZpw| 2w | [+ jar)
Defining a constant by,
2
=2 (A%)
Vs PsW

and comparing to Eq. (B11b) and Eqg. (B12) givesstmae formula for the perturbation
in velocity as in Martiret al provided our constamtis replaced by their constamnt

defined as,
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cy = (V_m]‘]_m (A5)
Vgm ) PsW

whereJ=1 sincem>0; in our work we have previously indicated tham=0 result

guoted by Martiret al assumes that the SH-APM is not converted to a keaxe by the
perturbing material. Thus, fon>0 the only difference between our SH-APM
perturbation formula and that of Marghal is the replacement of a mode group velocity,
Vgm, by ourvs?/2v,. The insertion loss for the damping of a SH-APMsze by a

viscoelastic liquid of infinite depth arising froour velocity perturbation formula is,

_ [ 20logipe) ab | 278y
IL= ( e j[ J[ e j,/ampf Fy(ar) (A6)

2
PsVs

whereas the formula from the Marghal paper would have an additional factorcgt.

A similar formula for the damping was also givenRigco and Martin in an earlier
papef>, but in that case the third factor in bracket&in (A6) was absent. Our first
factor in brackets in Eqg. (A6) evaluates to 0.97%FB,second term is thelrfactor and
theF.(wr) is theirF(wr) function. The primary difference between our ntis@ loss
formula for the viscoelastic liquid perturbationasf SH-APM sensor and the Ricco and
Martin formula® is the existence of the third factor, which evé#sao around 0.17 for
the lowest modes for the data in their paper. ioisobvious from the published work
why this factor should have been taken as unitye @gument might be to argue that

(2rvi/Wa)=(viy W) and assume,=fA,, so that the factor becomédg/W and then
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approximate it to unity. For example, by tak\WgimA./2 and averaging=1, 2 and 3
AW gives 11/9. However, such an argument would bengkecause it implies
wlhw/2f rather than the relationship between the subdtnatkness, mode speed and

frequency given by Eg. (32).
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Appendix B — Four-layer model

The layers in the model are defined in fig. 2 aredthe substrate, guiding-layer, mass
layer and fluid layer or thicknesses,|, m andf, respectively; subscripss|, m andf are
used to indicate quantities related to these layidrs displacements of the layers are

given by,

ug = (OlO)[CSe_TSX3 + DSeTsX3]ej((‘1_klxl) (B1)

Uy = (O;LO)l_Ake_kaXS + BkekaXSJej(m_klxl) (BZ)

and the wavevectors by,

1 1

TSZ = a)2 —2 _—2 (BS)
Ve ovgs
1 1

Te=of| - (B4)
Vk V

where k=l, morfin Eqgs. (B2) and (B4) so that each representg tbgeiations. To obtain
the dispersion equation it is necessary to impasathary conditions of continuity of
stress and displacement at each interface betwagersland of the vanishing of stress at
the two free surfaces. The continuity of the dispfaents at the boundaries between the
substrate and guiding-layer, guiding-layer and nhagsr, and mass layer and fluid layer
give,
Cs+Ds=A+B (BS)
Aexpl- Tid)+ B expljTid) = Anexp(~ [Tnd)+ Bnexp(iTnd)  (B6)

Amexpl= jTr(d +h)) + By expljTm(d + h)) = A expl- jT¢ (d +h))+ B expljTm(d +h))
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(B7)

In addition, the stress boundary conditions atweefree surfaces give,

Csexp(Taw) - Dgexp- Tow) =0 (B8)
A expl- jTs (d +h+b))- A; expjT; (d +h+b))=0 (B9)

and the continuity of stress provides a furthee¢hequations,

Cs—Dg= jflm(A _BI) (B10)
A exp- jTid) - B exp(jTid) = &y [Anexpl- jTmd) - Bexd(jTd)]  (B11)

AmeXF(_ ij(d + h))_ Bm exdij(d + h)) = Efml_Af exd— iTs (d + h))‘ By eXF(ij(d + h))J
(B12)

whereé;=GTi/G;T; and theG;'s are the complex shear modulii which are defibgdq.
(14) for the Maxwell model of viscoelasticity. Solg the eight equations (B5)-(B12)

gives the full dispersion equation for the fourdagystem,

_ |&imtan(Td) - égn tanh(Tow)| + tan(Tph)1+ &g tanHTsw)tan(T;d
$fm tan(Tf b) B [[alr(':'ml;l()T[lﬁrl tan(T; td) —r(;sm t)f]:ln :(T:(vt)] —)E + 5: :an ::((ng :arrg: d g} (B13)

which has the correct limits for the systems oihgpge substrate, substrate plus layer and
substrate plus two-layers. In order to developntioglel for the effect of mass deposition
from a liquid Eq. (B13) is re-written with the tesrmvolving the mass layer grouped

together,
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[tan(Tid) - &g tanH(Tew)] + & tan(T; b1+ &g tanHT,w)tan(Tid)]
= tar(Tmh){[tan(T| d) - & tanHTow)|é 1, tan(Tf b) ~[1+ &g tanHTw)tan(T d)|&ry }

(B14)
Whenh=0, left-hand side of Eqg. (B14) equals zero andhdsfthe unperturbed system of
a device composed of a substrate and wave-guidyeg immersed in a viscoelastic fluid
of thicknes%. In Eq. (B14), the dependence on the perturbingsmacurs through the
tan(Th), &m and&m factors on the right-hand side of the equatiortindothat

U Tn?=pmef (1VvinIVe?) and performing an expansion abba0, we find

& idinglayer fluid) Vrznﬁ 2 tan2{T %)) (B1
= = g|_(w, vy, substratgyuidinglayer, flui 1-—2 o+ &5, tan® (T Pb)lopAh (B15)

whereg, is a function depending on the operating poirthefunperturbed system.
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Figures

Figure 1 Definition of axes, symbols and layer parameterpropagation of shear
horizontally polarized acoustic waves in a threestasystem. For sensor applications the
first layer is the substrate, the second layeneswave-guiding layer and the third layer is

the perturbing layer.

Propagation direction %h
______ , J
e o Mass layer
T/’ 2x Wave-guide layer IW
1
Substrate

Figure 2 Layers in the four-layer system. The substratejiggtlayer, mass layer and
fluid layer are indicated byy, I, m andf, respectively. For mass deposition from the

liquid phase the third layer is regarded as thé&upeation.

{=drh+b
Fluid b
d+h
X3 : Mass ]h
[ - Wave-guide ba
Substrate
-w
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Figure 3 The real part of the velocity as a function of tleemalized guiding layer
thicknessz=df/vi(wr - ) for the first two Love wave modes in a systena dihite
thickness substrate with a Maxwellian viscoelagticing layer. The solid curves
correspond taur=10° and the dotted curves tar=10; the dashed curves are the limits
for v— vsandv - vi. The other parameters &rel00 MHz,w=500pm, ps=2655 kg rit,

V5100 m &, 4=1000 kg ¥ andvi(wr— «)=1100 m &.

g

Phase Speed, v
g

2

0 0.2 0.4 0.6 0.8 1

Figure 4 The difference in the real part of the velocityaasinction of the normalized
guiding layer thickness=df/vi(wr - ) for the data in fig. 3; the solid curve is the
difference for the first Love wave mode and theetbturve is the difference for the

second Love wave mode.
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Figure 5 The insertion loss per metre propagation pathfaaation of the normalized
guiding layer thicknesa=df/vi(wr - ) for the first two Love wave modes; the
parameters are the same as in fig. 3. The solicedarfor wr=10° and the dotted curve is
the insertion loss data fesr=10, but divided by a factor of 10Horizontal line is the

vV limit given by Eq. (62).

Insertion Loss, ILdB m™

Figure 6 Magnitude of the phase velocity mass sensitivitycfion, 5., (i.e. Eq. (54)
with vi=v)); the parameters are the same as in fig. 2; The @arve is forwr=10° and the

dotted curve is the insertion loss datadar10.
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Figure 7 The insertion loss mass sensitivi, -, for sensing material of the same type
as the guiding layer (i.e. Eq. (64) with=V)); the parameters are the same as in fig. 2.
The solid curve is fowr=10° and the dotted curve is the insertion loss datafs10,

but divided by a factor of £0

940
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A
4 0 02 0.4 0.6 0.8 1
z
Figure 8 Comparison of the real and imaginary parts of gz for the data in fig.

3. The dotted curves with positive peaks are thagimary part of dlogy/dz for wr=10;
the corresponding data far=10" is vanishingly small on the scale of the figureeT
solid and dotted curves with negative peaks areeakpart of dlog/dz for wr=10° and

wr=10, respectively. Data for the first two Love me@ee shown.
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